
Pipit on the Post: Proving Pre- and1

Post-conditions of Reactive Systems2

Amos Robinson #3

Australian National University, Canberra, Australia4

Alex Potanin #5

Australian National University, Canberra, Australia6

Abstract7

Reactive languages such as Lustre and Scade are used to implement safety-critical control systems;8

proving such programs correct and having the proved properties apply to the compiled code is9

therefore equally critical. We introduce Pipit, a small reactive language embedded in F⋆, designed10

for verifying control systems and executing them in real-time. Pipit includes a verified translation11

to transition systems; by reusing F⋆’s existing proof automation, certain safety properties can be12

automatically proved by k-induction on the transition system. Pipit can also generate executable13

code in a subset of F⋆ which is suitable for compilation and real-time execution on embedded devices.14

The executable code is deterministic and total and preserves the semantics of the original program.15

2012 ACM Subject Classification Computer systems organization → Real-time languages; Theory16

of computation → Program verification; Software and its engineering → Specialized application17

languages18

Keywords and phrases Lustre, streaming, reactive, verification19

1 Introduction20

Safety-critical control systems, such as the anti-lock braking systems that are present in21

most cars today, need to be correct and execute in real-time. One approach, favoured by22

parts of the aerospace industry, is to implement the controllers in a high-level language23

such as Lustre [10] or Scade [13], and verify that the implementations satisfy the high-level24

specification using a model-checker, such as Kind2 [11]. These model-checkers can prove25

many interesting safety properties automatically, but do not provide many options for manual26

proofs when the automated proof techniques fail. Additionally, the semantics used by the27

model-checker may not match the semantics of the compiled code, in which case properties28

proved do not necessarily hold on the real system. This mismatch may occur even when the29

compiler has been verified to be correct, as in the case of Vélus [5]. For example, in Vélus,30

integer division rounds towards zero, matching the semantics of C; however, integer division31

in Kind2 rounds to negative infinity, matching SMT-lib [2, 25].32

To be confident that our proofs hold on the real system, we need a single shared semantics33

for the compiler and the prover. In this paper we introduce Pipit1, an embedded domain-34

specific language for implementing and verifying controllers in F⋆. Pipit aims to provide a35

high-level language based on Lustre, while reusing F⋆’s proof automation and manual proofs36

for verifying controllers [31], and using Low⋆’s C-code generation for real-time execution [34].37

To verify programs, Pipit translates its expression language to a transition system for k-38

inductive proofs, which is verified to be an abstraction of the original semantics. To execute39

programs, Pipit can generate executable code, which is total and semantics-preserving.40

In this paper, we make the following contributions:41

1 Implementation available at https://github.com/songlarknet/pipit

mailto:amos.robinson@anu.edu.au
https://orcid.org/0009-0004-4837-4981
mailto:alex.potanin@anu.edu.au
https://orcid.org/0000-0002-4242-2725
https://github.com/songlarknet/pipit

2 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

TM0 TM1 TM2 · · · TM9
C0 SEND A SEND B - · · · WATCH
C1 SEND A - SEND C · · · WATCH

0:{ time = 0; enabled = {C0,C1}; action = SEND(A); }
1:{ time = 1; enabled = {C0}; action = SEND(B); }
2:{ time = 2; enabled = {C1}; action = SEND(C); }
3:{ time = 9; enabled = {C0,C1}; action = WATCH; }

Figure 1 Left: node matrix; right: corresponding triggers array configuration

we motivate the need to combine manual and automated proofs of reactive systems with42

a strong specification language (Section 2);43

we introduce Pipit, a minimal reactive language that supports rely-guarantee contracts44

and properties; crucially, proof obligations are annotated with a status — valid or deferred45

— allowing proofs to be delayed until more is known of the program context (Section 3);46

we describe a checked semantics for Pipit; after checking deferred properties, programs47

are blessed, which marks their properties as valid (Subsection 3.2);48

we describe an encoding of transition systems that can express under-specified rely-49

guarantee contracts as functions rather than relations; composing functions results in50

simpler transition systems (Section 4);51

we identify the invariants and lemmas required to prove that the abstract transition52

system is an abstraction of the original semantics (Subsection 3.3, Subsection 4.3);53

similarly, we offer a mechanised proof that the executable transition system preserves the54

original semantics (Section 5);55

finally, we evaluate Pipit by implementing the high-level logic of a Time-Triggered56

Controller Area Network (TTCAN) bus driver and verifying an abstract model of a key57

component (Section 6).58

2 Pipit for time-triggered networks59

To introduce Pipit, we consider a time-triggered network driver, which has a static schedule60

dictating the network traffic, and which all nodes on the network must adhere to. This driver61

is a simplification of the Time-Triggered Controller Area Network (TTCAN) bus specification62

[15] which we will discuss further in Section 6.63

At a high level, the network schedule is described by a system matrix which consists of64

rows of basic cycles. Each basic cycle consists of a sequence of actions to be performed at65

specific time-marks. Actions in the schedule may not be relevant to all nodes; the node’s node66

matrix contains only the relevant actions. The node matrix is represented in memory by a67

triggers array containing triggers sorted by their time-marks; trigger actions include sending68

and receiving application-specific messages, sending reference messages, and triggering ‘watch’69

alerts. Reference messages start a new basic cycle; a subset of nodes, designated as leaders,70

send reference messages to synchronise the network. Watch alerts are generally placed after71

an expected reference message to signal an error if no reference message is received.72

Figure 1 (left) shows an example node matrix for a non-leader node. The matrix consists73

of two basic cycles C0 and C1 with messages sent at time-marks 0, 1 and 2. The node74

expects to receive a reference message at time-mark 7; the watch at time-mark 9 allows a75

grace period before triggering an error if the reference message is not received. Figure 176

(right) shows the corresponding triggers array.77

The network has strict timing requirements which prohibit the driver from looping through78

the entire triggers array at each time-mark. Instead, the driver maintains an index that79

refers to the current trigger. At each time-mark, the driver checks if the current trigger has80

expired or is inactive, and if so, it increments the index.81

A. Robinson and A. Potanin 3

2.1 Deferring and proving properties82

We implement a streaming function count_when to maintain the index into the triggers83

array; the function takes a constant natural number max and a stream of booleans inc. At84

each step, count_when checks whether the current increment flag is true; if so, it increments85

the previous counter, saturating at the maximum; otherwise, it leaves the counter as-is.86

let count_when (max: N) (inc: stream B): stream N =
rec count.

check□? (0 ≤ count ≤ max);
let count’ = (0 fby count) + (if inc then 1 else 0) in
if count’ ≥ max then max else count’

The implementation of count_when first defines a recursive stream, count, which states87

an invariant about the count before defining the incremented stream count’. Inside count’,88

the syntax 0 fby count is read as “the initial value of zero followed by the previous count”.89

The syntax check□? (0 ≤ count ≤ max) asserts that the count is within the range [0, max].90

The subscript □? on the check is the property status, which in this case denotes that the91

assertion has been stated, but it is not yet known whether it holds. A property status of92

□✓ , on the other hand, denotes that a property has been proved to hold. These property93

statuses are used to defer checking properties until enough is known about the environment,94

and to avoid rechecking properties that have already been proven. In practice, the user95

does not explicitly specify property statuses in the source language. The stated property96

(0 ≤ count ≤ max) is a stream of booleans which must always be true. Non-streaming97

operations such as ≤ are implicitly lifted to streaming operations, and non-streaming values98

such as 0 and max are implicitly lifted to constant streams.99

We defer the proof of the property here because, at the point of stating the property100

inside the rec combinator, we don’t yet have a concrete definition for the count variable.101

In this case, we could have instead deferred the statement of the property by introducing102

a let-binding for the recursive count and putting the check outside of the rec combinator.103

However, it is not always possible to defer property statements: for example, when calling104

other streaming functions that have their own preconditions, it may not be possible to move105

the function call outside of its enclosing rec.106

Pipit is an embedded domain-specific language. The program above is really syntactic107

sugar for an F⋆ program that takes a natural number and constructs a Pipit core expression108

with a free boolean variable. We will discuss the details of the core language in Section 3,109

but for now we focus on the source program with some minor embedding details omitted.110

To actually prove the property above, we use the meta-language F⋆’s tactics to translate111

the program into a transition system and prove the property inductively on the system.112

Finally, we bless the expression, which marks the properties as valid ([□? := □✓]). Blessing is113

an intensional operation that traverses the expression and updates the internal metadata,114

but does not affect the runtime semantics.115

let count_when□✓ (max: N): stream B → stream N =
let system = System.translate1(count_when max) in
assert (System.inductive_check system) by (pipit_simplify ());
bless1 (count_when max)

The subscript 1 in the translation to transition system and blessing operations refers116

to the fact that the stream function has one stream parameter. The pipit_simplify tactic117

4 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

in the assertion performs normalisation-by-evaluation to simplify away the translation to a118

first-order transition system; F⋆’s proof-by-SMT can then solve the inductive check directly.119

Callers of count_when can now use the validated variant without needing to re-prove120

the count-range property. In a dedicated model-checker such as Kind2 [11] or Lesar [35],121

this kind of bookkeeping would all be performed under-the-hood. By embedding Pipit in a122

general-purpose theorem prover, we move some of the bookkeeping burden onto the user;123

however, we have increased confidence that the compiled code matches the verified code and,124

as we shall see, we also have access to a rich specification language.125

2.2 Restrictions on the triggers array126

Our driver may fall behind when trying to execute certain schedules, as the driver only127

processes one trigger per time-mark. To ensure that the schedule can be executed on time,128

the triggers array must allow sufficient time for the driver to skip over any disabled triggers129

before the next enabled trigger starts.130

Recall our concrete triggers array from Figure 1, which contained trigger 1 (SEND B at131

time-mark 1 on cycle C0), and trigger 2 (SEND C at time-mark 2 on cycle C1). We could132

postpone trigger 1 to send B at time-mark 2, as the corresponding cell in the node matrix133

is empty. However, we cannot bring the trigger at index 2 forward to send message C at134

time-mark 1, as it takes two steps to reach trigger 2 from the start of the array.135

We impose three restrictions on valid triggers arrays: the time-marks must be sorted;136

there must be an adequate time-gap between any two triggers that are enabled on the same137

cycle index; and each trigger’s time-mark must be greater-than-or-equal to its index, so that138

it is reachable in time from the start of the array.139

With these restrictions in place, we prove a lemma lemma_can_reach_next, which states140

that for all valid cycle indices and trigger indices, if the current trigger is enabled in the141

current cycle and there is another enabled trigger scheduled to occur somewhere in the array142

after the current one, then there is an adequate time-gap to allow the driver to skip over any143

disabled triggers in-between. These properties are straightforward in a theorem prover, but144

are difficult to state in a model-checker with a limited specification language.145

2.3 Instantiating lemmas and defining contracts146

We can now implement the trigger-fetch logic, which keeps track of the current trigger. We147

use the count_when streaming function to define the index of the current trigger; we tell148

count_when to increment the index whenever the previous index has expired or is inactive149

in the current basic cycle. We simplify our presentation here and only consider a constant150

cycle: the real system presented in Section 6 has some extra complexity such as resetting the151

index, incrementing the cycle index at the start of a new cycle, and using machine integers.152

let trigger_fetch (cycle: N) (time: stream N): stream N =
rec index.

let inc = false fby ((time_mark index) ≤ time ∨ ¬(enabled index cycle)) in
let index = count_when□✓ trigger_count inc in
pose (lemma_can_reach_next cycle index);
check□? (can_reach_next_active cycle time index);
index

The trigger_fetch function takes a static cycle index and a stream denoting the current153

time. The increment flag and the index are mutually dependent — the increment flag depends154

A. Robinson and A. Potanin 5

on the previous value of the index, while the index depends on the current value of the155

increment flag — so we introduce a recursive stream for the index. We allow the index to go156

one past the end of the array to denote that there are no more triggers.157

We use the pose helper function to lift the lemma_can_reach_next lemma to a streaming158

context and instantiate it. We then state an invariant as a deferred property. Informally, the159

invariant states that, either the current active trigger is not late, or the next active trigger160

after the current index is in the future and we can reach it in time.161

With the explicitly instantiated lemma, we can prove the streaming invariant by straight-162

forward induction on the transition system. To help compose this function with the rest of163

the system, we also abstract over the details of the trigger-fetch mechanism by introducing a164

rely-guarantee contract for trigger_fetch. The contract we state is that if we are called once165

per time-mark then we guarantee that we never encounter a late trigger.166

let trigger_fetch□✓ (cycle: N): stream N → stream N =
let contract = Contract.contract_of_stream1 {

rely = (λtime. time = 0 fby (time + 1));
guar = (λtime index. (index_valid index ∧ enabled index cycle)

=⇒ (time_mark index) ≥ time);
body = (λtime. trigger_fetch cycle time);

} in
assert (Contract.inductive_check contract) by (pipit_simplify ());
Contract.stream_of_contract1 contract

In the implementation of the validated variant of trigger_fetch, we first construct the167

contract from streaming functions. The Contract.contract_of_stream1 combinator describes168

a contract with one input (the time stream), and takes stream transformers for each of the169

rely, guarantee and body. The combinator transforms the surface syntax into core expressions.170

The assertion (Contract.inductive_check contract) then translates the expressions into a171

transition system, and checks that if the rely always holds then the guarantee always holds,172

and that the as-yet-unchecked subproperties hold. Finally, Contract.stream_of_contract1173

blesses the core expression and converts it back to a stream transformer, so it can be easily174

used by other parts of the program.175

The key distinction between our streaming rely-guarantee contracts and imperative176

pre-post contracts is that the rely and guarantee are both streams of booleans, rather than177

instantaneous predicates. In this case, the rely (time = 0 fby (time + 1)) checks that the178

current time is exactly one time-mark after the time at the previous tick of computation.179

Expressing such a rely in an imperative setting would require extra encoding, as preconditions180

in imperative languages do not generally have an innate notion of the previous value with181

respect to a global shared clock.182

When trigger_fetch is used in other parts of the program, the caller must ensure that183

the environment satisfies the rely clause. In the core language, this is tracked by another184

deferred property status attached to the contract; we will discuss this further in Section 3.185

3 Pipit core language186

We now introduce the core Pipit language. Note that this form differs slightly from the187

surface syntax presented earlier in Section 2, which used the syntax of the metalanguage F⋆,188

as well as including proofs in F⋆ itself.189

6 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

F* embedded
source

Core Pipit
(Section 3)

Executable System
(Section 5)

Abstract System
(Section 4)

Low* C

⊆ ⊢
= =

Figure 2 Architecture of Pipit. The gray boxes and solid arrows are defined in this paper. The
white boxes and dashed arrows are trusted components. The labels denote verified properties of the
translation: abstraction (⊆), entailment of proof obligations (⊢), and equivalence (=).

e, e′ := v | x | p(e) (values, variables and operations)
| v fby e | rec x. e[x] (delayed and recursive streams)
| let x = e in e′[x] (let-expressions)
| checkπ eprop (checked properties)
| contractπ {erely} ebody {x. eguar[x]} (rely-guarantee contracts)

v := n ∈ N | b ∈ B | r ∈ R | . . . (values)
p := (+) | (−) | (×) | if-then-else | . . . (primitives)

π := □✓ | □? (property statuses: valid or unknown)

V := · | V ; v (streams of values)
σ := {x 7→ v} (heaps)
Σ := · | Σ; σ (streaming history environments)
τ, τ ′ := N | B | τ × τ | . . . (value types)
Γ := · | x : τ, Γ (type environments)

Figure 3 Core grammar: expressions e, values v, primitive operations p, and property statuses π.

Figure 2 shows the high-level architecture of Pipit. On the left-hand-side, the surface190

syntax embedded in F⋆ is shown; this includes some Pipit-specific syntactic sugar. The191

translation from the surface syntax to the core language is trusted. There are two targets192

from the core language: abstract transition systems for verification, and executable transition193

systems for extraction to C. The translation to abstract systems is verified to be an abstraction194

according to the dynamic semantics (Subsection 3.1). The translation to abstract systems195

also generates proof obligations, which are verified to correspond to the proof obligations196

on the original program. The translation to executable transition systems is proven to be197

semantics-preserving, as is the subsequent translation to Low⋆. The translation from Low⋆
198

to C is external to this paper and forms part of our trusted computing base.199

Figure 3 defines the grammar of Pipit. The expression form e includes standard syntax for200

values (v), variables (x) and primitive applications (p(e)). Most of the expression forms were201

introduced informally in Section 2 and correspond to the clock-free expressions of Lustre [10].202

The expression syntax for delayed streams (v fby e) denotes the previous value of the203

stream e, with an initial value of v when there is no previous value.204

Recursive streams are defined using the fixpoint operator (rec x. e[x]); the syntax e[x]205

A. Robinson and A. Potanin 7

means that the variable x can occur in e. As in Lustre, recursive streams can only refer to206

their previous values and must be guarded by a delay: the stream (rec x. 0 fby (x + 1)) is207

well-defined and counts from zero up, but the stream (rec x. x + 1) is invalid and has no208

computational interpretation. This form of recursion differs slightly from standard Lustre,209

which uses a set of mutually-recursive bindings. Although we cannot express mutually-210

recursive bindings in the core syntax here, we can express them as a notation on the surface211

syntax by combining the bindings together into a record or tuple.212

Checked properties and contracts are annotated with their property status π, which can213

either be valid (□✓) or unknown (□?). For checked properies checkπ e, the property status214

denotes whether the property has been proved to be valid.215

Contracts contractπ {erely} ebody {x. eguar[x]} allow modular reasoning by replacing the216

implementation with an abstract specification. Contracts involve two verification conditions.217

Firstly, when a contract is defined, the definer must prove that the body satisfies the contract:218

roughly, if erely is always true, then eguar[x := ebody] is always true. Secondly, when a contract219

is instantiated, the caller must prove that the environment satisfies the precondition: that is,220

erely is always true. Conceptually, then, a contract could have two property statuses: one for221

the definition and one for the instantiation. However, in practice, it is not useful to defer the222

proof of a contract definition — one could achieve a similar effect by replacing the contract223

with its implementation. For this reason, we only annotate contracts with one property224

status, which denotes whether the instantiation has been proved to satisfy the precondition.225

For example, the core expression (rec sum. (0 fby sum) + ints) computes the sum of
values from a stream of integers ints by defining a recursive stream sum, which is delayed
and given an initial value of zero. If we were to use this sum in a context that required a
strictly positive integer, we could give it a contract that states that if the input stream is
always positive, then the resulting sum is also positive:

contract□? {ints > 0} (rec sum. (0 fby sum) + ints) {sum. sum > 0}

To be considered a valid program, we must prove that the contract definition itself holds, as226

with our earlier contract (Subsection 2.3). The unknown property status here allows us to227

defer the caller’s proof that the input stream is always positive until the contract is used.228

The remaining grammatical constructs of Figure 3 describe streams, value environments,229

types and type environments. Streams V are represented as a sequence of values; streaming230

history environments Σ are streams of heaps. Types τ and type environments Γ are standard.231

For the presentation of the formal grammar here, we consider only a fixed set of values and232

primitives; in practice, the implementation is parameterised by a primitive table which we233

extend with immutable array operations for the TTCAN driver logic in Section 6.234

We define the typing judgments for Pipit in Figure 4. Most of the typing rules are standard235

for an unclocked Lustre. The typing judgment Γ ⊢ e : τ denotes that, in an environment236

of streams Γ, expression e denotes a stream of type τ . This core typing judgment differs237

from the surface syntax used in Section 2, which used an explicit stream type; for the core238

language, we instead assume that everything is a stream.239

We use an auxiliary function prim-value-type(v) = τ to denote that value v has type τ ;240

for primitives prim-type(p) = (τ1 × · · · . . . × τn) → τ ′ denotes that p takes arguments of type241

τi and returns a result of type τ ′. Primitives are pure, non-streaming functions.242

Rules TValue, TVar, TPrim and TLet are standard.243

Rule TFby states that expression v fby e requires both v and e to have equal types.244

Rule TRec states that a recursive stream rec x. e has the recursive stream bound inside245

e. The recursion must also be guarded, in that any recursive references to x are delayed, but246

this requirement is performed as a separate syntactic check described in Subsection 3.3.247

8 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

Γ ⊢ e : τ

prim-value-type(v) = τ

Γ ⊢ v : τ
(TValue)

Γ, x : τ, Γ′ ⊢ x : τ
(TVar)

prim-type(p) = (τ1 × · · · × τn) → τ ′ Γ ⊢ e1 : τ1 . . . Γ ⊢ en : τn

Γ ⊢ p(e) : τ ′ (TPrim)

prim-value-type(v) = τ Γ ⊢ e′ : τ

Γ ⊢ v fby e′ : τ
(TFby) Γ, x : τ ⊢ e : τ

Γ ⊢ rec x. e[x] : τ
(TRec)

Γ ⊢ e : τ Γ, x : τ ⊢ e′ : τ ′

Γ ⊢ let x = e in e′[x] : τ ′ (TLet) Γ ⊢ e : B
Γ ⊢ checkπ e : unit

(TCheck)

Γ ⊢ erely : B Γ ⊢ ebody : τ Γ, x : τ ⊢ eguar : B
Γ ⊢ contractπ {erely} ebody {x. eguar[x]} : τ

(TContract)

Figure 4 Typing rules for Pipit; the judgment Γ ⊢ e : τ denotes that expression e describes a
stream of values of type τ . Auxiliary functions are used for values and primitive operations.

Rule TCheck states that checked properties checkπ e require a boolean property e.248

Finally, rule TContract applies for a contract contractπ {erely} ebody {x. eguar[x]}249

with a body expression of type τ . The overall expression has result type τ . Both rely and250

guarantee must be boolean expressions, and the guarantee can refer to the result as x.251

3.1 Dynamic semantics252

The dynamic semantics of Pipit are defined in Figure 5. We present our semantics in a253

big-step form. This differs somewhat from traditional reactive semantics of Lustre [10]. Our254

big-step semantics emphasises the equational nature of Pipit, as it is substitution-based and255

syntax-directed, while the reactive semantics emphasises the finite-state streaming execution256

of the system. We use transition systems for reasoning about the finite-state execution257

(Section 4), which is fairly standard [9, 11, 35]. Previous work on the W-calculus [17] for258

linear digital-signal-processing filters makes a similar distinction and provides a non-streaming259

semantics for reasoning about programs and a streaming semantics for executing programs.260

The judgment form Σ ⊢ e ⇓ v denotes that expression e evaluates to value v under261

streaming history Σ. The streaming history is a stream of heaps; in practice, we only evaluate262

expressions with a non-empty streaming history.263

At a high level, evaluation unfolds recursive streams to determine a value. For example,
to evaluate the earlier sum example with input ints = [1; 2], we start with the judgment:

{ints 7→ 1}; {ints 7→ 2} ⊢ (rec sum. (0 fby sum) + ints) ⇓ v

First, we unfold the recursive stream one step to get (0 fby (rec sum. (0 fby sum) +
ints)) + ints. Evaluation of primitives is standard. To evaluate variables, we look for the
variable in the current (rightmost) heap:

{ints 7→ 1}; {ints 7→ 2} ⊢ ints ⇓ 2 (Var)

A. Robinson and A. Potanin 9

Σ ⊢ e ⇓ v

Σ; σ ⊢ x ⇓ σ(x) (Var) Σ ⊢ v ⇓ v
(Value) Σ ⊢ e′[x := e] ⇓ v

Σ ⊢ let x = e in e′[x] ⇓ v
(Let)

Σ ⊢ e1 ⇓ v1 . . . Σ ⊢ en ⇓ vn

Σ ⊢ p(e) ⇓ prim-sem(p, v) (Prim)

σ ⊢ v fby e′ ⇓ v
(Fby1) length(Σ) > 0 Σ ⊢ e′ ⇓ v′

Σ; σ ⊢ v fby e′ ⇓ v′ (FbyS)

Σ ⊢ e[x := rec x. e] ⇓ v

Σ ⊢ rec x. e[x] ⇓ v
(Rec) Σ ⊢ checkπ e ⇓ () (Check)

Σ ⊢ ebody ⇓ v

Σ ⊢ contractπ {erely} ebody {x. eguar[x]} ⇓ v
(Contract)

Σ ⊢ e ⇓∗ V Σ ⊢ e ⇓2 ⊤

· ⊢ e ⇓∗ ·
(Steps0) Σ ⊢ e ⇓ V Σ; σ ⊢ e ⇓ v

Σ; σ ⊢ e ⇓ V ; v
(StepsS)

Σ ⊢ e ⇓∗ ⊤; . . .

Σ ⊢ e ⇓2 ⊤
(Always)

Figure 5 Dynamic semantics for Pipit; the judgment form Σ ⊢ e ⇓ v denotes that evaluating
expression e under streaming history Σ results in value v.

For delays, we discard the current heap and continue evaluation with the history prefix:

{ints 7→ 1} ⊢ (rec sum. (0 fby sum) + ints) ⇓ 1
{ints 7→ 1}; {ints 7→ 2} ⊢ 0 fby (rec sum. (0 fby sum) + ints) ⇓ 1 (FbyS)

Returning to Figure 5, rule Var evalutes a variable x under some non-empty stream264

history Σ; σ, where σ is the most recent heap. Rules Value and Let are standard. Rule Prim265

evaluates a primitive p applied to many arguments e1 to en by evaluating each argument266

separately; we then apply the primitive with prim-sem metafunction.267

For delay expressions v fby e, we have two cases depending on whether there is a previous268

value. When there is no previous value – the streaming history only contains the current269

heap – rule Fby1 evaluates to the default value v. Otherwise, rule FbyS applies; we evaluate270

the previous value of e by discarding the most recent entry from the streaming history.271

Rule Rec evaluates a recursive stream rec x. e by unfolding the recursion one step. For272

causal expressions (Subsection 3.3), where each recursive occurrence of x is guarded by a273

followed-by, this unfolding eventually terminates as each followed-by shortens the history.274

Rule Check ignores the property when evaluating check expressions. We do not dynam-275

ically check the property here; this is done in the checked semantics (Subsection 3.2).276

Similarly, rule Contract ignores preconditions and postconditions when evaluating277

contracts. From an abstraction perspective, it would be valid to return an arbitrary value that278

satisfies the contract. However, such an abstraction would make evaluation non-deterministic279

10 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

and, for contracts with unsatisfiable postconditions, non-total. The deterministic and total280

nature of evaluation is key to our proofs and metatheory.281

We also define two auxiliary judgment forms: Σ ⊢ e ⇓∗ V and Σ ⊢ e ⇓2 ⊤.282

Judgment form Σ ⊢ e ⇓∗ V denotes that, under history Σ, expression e evaluates to the283

stream V . This judgment performs iterated application of single-value evaluation.284

Judgment form Σ ⊢ e ⇓2 ⊤ denotes that a boolean expression e evaluates to the stream285

of trues under history Σ. Informally, it can be read as “e is always true in history Σ”.286

3.2 Checked semantics287

In addition to the big-step semantics above, we also define a judgment form for checking288

that the properties and contracts of a program hold for a particular streaming history. We289

call these the checked semantics; they are comparable to checking runtime assertions.290

The checked semantics have the judgment form Σ ⊢π e valid, which denotes that under291

streaming history Σ, the properties and contracts of e with status π hold. The property292

status dictates which properties should be checked and which should be ignored.293

We consider a program to be valid if its checks hold for all histories (∀Σ. Σ ⊢□✓ e valid).294

The checked semantics are a specification describing what it means to be a valid program. We295

do not generally verify programs directly using the checked semantics; instead, we translate296

to an abstract transition system and construct the proofs there (Section 4).297

To check a property (checkπ e) in history Σ, we check that e is always true (Σ ⊢ e ⇓2 ⊤).298

Checking contracts is more involved. For whole-program correctness, it would suffice to299

check that a contract’s rely and guarantee both hold. However, the purpose of contracts is to300

enable modular reasoning about parts of the program: we need to be able to check contracts301

independently of their context. Conceptually, then, contracts involve two kinds of checks:302

one for the definition and one for the call-site. To check a contract definition, we check that303

the body satisfies the guarantee for all valid contexts – that is, those where the rely holds.304

Then, to check a contract instance, we just need to check that the call-site satisfies the rely.305

For example, recall our earlier contract that the sum of strictly positive integers is positive:

let sum i = contract□? {i > 0} (rec sum. (0 fby sum) + i) {sum. sum > 0}

To check the contract definition on a concrete input i = [1; 2], we first evaluate the body:

{i 7→ 1}; {i 7→ 2} ⊢ (rec sum. (0 fby sum) + i) ⇓∗ [1; 3]

We then check that, assuming all inputs are positive, then all results are positive:

{i 7→ 1}; {i 7→ 2} ⊢ i > 0 ⇓2 ⊤ =⇒ {i 7→ 1, sum 7→ 1}; {i 7→ 2, sum 7→ 3} ⊢ sum > 0 ⇓2 ⊤

It is critical that the rely is true at all points in the stream. Consider if we had instead306

used the input stream i = [−10; 1]; the rely is false at the first step, but is instantaneously307

true at the second step. In this case, the sum is −10 at the first step, and −9 at the second308

step. At both steps the output is negative and the guarantee is false, even though the309

rely becomes true at the second step. The contract itself remains valid, however, as the310

assumption is invalid: the input did not satisfy the rely at all steps.311

The checked semantics of Pipit is defined in Figure 6.312

Rules ChkValue and ChkVar state that values and variables are always valid.313

Rule ChkPrim checks a primitive application by descending into the subexpressions.314

Similarly, rule ChkFby descends into followed-by expressions.315

A. Robinson and A. Potanin 11

Σ ⊢π e valid

Σ ⊢π v valid (ChkValue) Σ ⊢π x valid (ChkVar)

Σ ⊢π e1 valid . . . Σ ⊢π en valid
Σ ⊢π p(e) valid (ChkPrim) Σ ⊢π e′ valid

Σ ⊢π v fby e′ valid
(ChkFby)

Σ ⊢ rec x. e ⇓∗ V Σ[x 7→ V] ⊢π e valid
Σ ⊢π rec x. e[x] valid (ChkRec)

Σ ⊢π e valid Σ ⊢ e ⇓∗ V Σ[x 7→ V] ⊢π e′ valid
Σ ⊢π let x = e in e′[x] valid

(ChkLet)

(π = π′ =⇒ Σ ⊢ e ⇓2 ⊤) Σ ⊢π e valid
Σ ⊢π checkπ′ e valid (ChkCheck)

Σ ⊢ ebody ⇓∗ V

(π = π′ =⇒ Σ ⊢ erely ⇓2 ⊤)
(π = □✓ =⇒ Σ ⊢ erely ⇓2 ⊤ =⇒ Σ[x 7→ V] ⊢ eguar ⇓2 ⊤)

Σ ⊢π erely valid
(Σ ⊢ erely ⇓2 ⊤ =⇒ Σ ⊢π ebody valid ∧ Σ[x 7→ V] ⊢π eguar valid)

Σ ⊢π contractπ′ {erely} ebody {x. eguar[x]} valid
(ChkContract)

Figure 6 Checked semantics for Pipit; the judgment form Σ ⊢π e valid denotes that evaluating
expression e under streaming history Σ satisfies the checks and rely-guarantee contract requirements
that are labelled with property status π.

Rule ChkRec checks a recursive-expression rec x. e by evaluating the overall expression316

to a stream of values V . The rule then extends the streaming environment Σ with x bound to317

the values from V ; this extended environment is used to descend into the recursive expression.318

Rule ChkLet checks a let-expression let x = e in e′ descends into both sub-expressions.319

To check the body e′, the rule first evaluates e and extends the streaming environment.320

Finally, the heavy lifting is performed by rules ChkCheck and ChkContract.321

Rule ChkCheck checks the properties marked π in an expression checkπ′ e. If the322

check-expression has the same status as what we are checking (π = π′), then we evaluate323

the expression e and require it to be true at all steps. We then unconditionally descend into324

the subexpression to check any nested properties. Such nested properties are unlikely to be325

written directly by the user, but might occur after inlining.326

Rule ChkContract applies when checking property status π of a contract with expression327

contractπ′ {erely} ebody {x. eguar[x]}. This rule checks both the contract definition and the328

call-site. We evaluate the body to a stream V ; these values are used to check that the body329

satisfies guarantee. Although the contract only has one property status, conceptually there330

are two distinct properties: one for the caller (π′) and one for the definition (assumed to331

be □✓). To check the caller property when π = π′, we evaluate the rely erely and require it332

to hold. To check the definition property when π = □✓ , we assume that the rely holds, and333

check that the body satisfies the guarantee. We also descend into the subexpressions to check334

them; when checking the body and guarantee, we can assume that the rely holds.335

12 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

3.2.1 Blessing expressions and contracts336

Blessing is a meta-operation that replaces the property statuses in an expression so that all337

checks and contracts are marked as valid (□✓). Blessing an expression requires a proof that,338

for all input streams, assuming the valid checks hold, then the unknown checks hold:339

∀Σ. Σ ⊢□✓ e valid =⇒ Σ ⊢□? e valid
bless e

(BlessExpression)

We generally prove the required properties by first translating the program to an abstract340

transition system, as described in Section 4.341

Blessing is different for contract definitions, as we need to separate the definition of the342

contract from the instantiation. To check that a contract definition is valid, we show that if343

the rely clause is always true for a particular input, then the body satisfies the guarantee for344

the same inputs. We also assume that the valid properties in the rely, body and guarantee345

hold, and show the corresponding unknown properties:346

let contract_valid {erely} ebody {eguar} : prop =
∀Σ. (Σ ⊢□✓ (erely, ebody, eguar[x := ebody]) valid ∧ Σ ⊢ erely ⇓2 ⊤)
=⇒ (Σ ⊢□? (erely, ebody, eguar[x := ebody]) valid ∧ Σ ⊢ eguar[x := ebody] ⇓2 ⊤)

After proving that the contract is valid for all inputs, we can bless the contract definition.
Blessing the contract definition blesses the subexpressions for the rely, body and guarantee,
but leaves the contract’s instantiation property status as unknown:

contract_valid {erely} ebody {eguar}
bless_contract {erely} ebody {eguar}

(BlessContract)

3.3 Causality and metatheory347

To ensure that recursive streams have a computational interpretation, we implement a348

causality restriction, similar to standard Lustre [10]. This restriction checks that all recursive349

streams are guarded by a followed-by delay. We implement this as a simple syntactic check:350

each rec x. e can only mention x inside a followed-by. This check ensures productivity351

of recursive streams, but can be too strict: for example, the expression rec x. (let x′ =352

x + 1 in 0 fby x′) mentions the recursive stream x outside of the delay and is outlawed, but353

after inlining the let, it would be causal. We hope to relax this restriction in future work.354

The causality restriction gives us some important properties about the metatheory. The355

most important property is that the dynamic semantics form a total function: given a356

streaming history and a causal expression, we can evaluate the expression to a value. These357

properties are mechanised in F⋆.358

▶ Theorem 1 (bigstep-is-total). For any non-empty streaming history Σ and causal expression359

e, there exists some value v such that e evaluates to v (Σ ⊢ e ⇓ v).360

The relationship between substitution and the streaming history is also important. In361

general, we have a substitution property that states that evaluating a substituted expression362

e[x := e′] under some context Σ is equivalent to evaluating e′ and adding it to the context Σ:363

▶ Theorem 2 (bigstep-substitute). For a streaming history Σ and causal expressions e364

and e′, if e[x := e′] evaluates to a value v (Σ ⊢ e ⇓ v), then we can evaluate e′ to some365

stream V (Σ ⊢ e′ ⇓∗ V) and extend the streaming history to evaluate e to the original value366

(Σ[x 7→ V] ⊢ e ⇓ v). The converse is also true.367

A. Robinson and A. Potanin 13

type system (input: Γ) (result: τ) = {
state: Γ;
free: Γ;
init: heap state;
step: heap input → heap free → heap state → step_result state result;

}

type step_result (state: Γ) (result: τ) = {
update: heap state;
value: result;
rely: prop;
guar: prop;

}

Figure 7 Abstract transition system type definitions

The big-step semantics in Figure 5 for a recursive expression rec x. e performs one step of368

recursion by substituting x for the recursive expression. An alternative non-syntax-directed369

semantics would be to have the environment outside the semantics supply a stream V such370

that if we extend the streaming history with x 7→ V , then e evaluates to V itself. The above371

substitution theorem can be used to show that, for causal expressions, these two semantics372

are equivalent. We can additionally show that, when evaluating e with x 7→ V , the most373

recent value in V does not affect the result. This fact can be used to “seed” evaluation by374

starting with an arbitrary value:375

▶ Theorem 3 (bigstep-rec-causal). For a streaming history Σ; σ and a causal recursive376

expression rec x. e, if (Σ; σ ⊢ e ⇓ v), then updating σ[x] with any value v′ results in the377

same value: (Σ; σ[x 7→ v′] ⊢ e ⇓ v).378

4 Abstract transition systems379

To prove properties about Pipit programs, we translate to an abstract transition system,380

so-called because it abstracts away the implementation details of contract instantiations. For381

extraction we also translate to executable transition systems, which we discuss in Section 5.382

Figure 7 shows the types of transition systems. A transition system is parameterised383

by its input context and the result type. It also contains two internal contexts: firstly, the384

state context describes the private state required to execute the machine; secondly, the free385

context contains any extra input values that the transition system would like to existentially386

quantify over. The free context is used to allow the system to ask for arbitrary values from387

the environment, when it would not otherwise be able to return a concrete value.388

For recursive streams and contract instantiations, which hide their implementation, the389

natural translation to a transition system would involve existentially quantifying a result390

that satisfies the specification. Unfortunately, using an existential quantifier requires a step391

relation rather than a step function. Using a step relation complicates the resulting transition392

system, as other operations such as primitive application must also introduce existential393

quantifiers; such quantifiers block simplifications such as partial-evaluation and result in a394

more complex transition system. Instead, the free context provides the step function with a395

fresh unconstrained value of the desired type, which the step function can then constrain.396

14 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

Back to Figure 7, the step-result contains the updated state for the transition system, as397

well as the result value. The step-result additionally contains two propositions; one for the398

‘rely’, or assumptions about the execution environment, and another for the ‘guarantee’, or399

obligations that the transition system must show. For the transition system corresponding400

to an expression e, these propositions are roughly analogous to the known checked semantics401

Σ ⊢□✓ e valid and unknown checks Σ ⊢□? e valid respectively.402

For example, recall again the sum contract:

let sum ints = contract□? {ints > 0} (rec sum. (0 fby sum) + ints) {sum. sum > 0}

To verify the contract definition, we first translate it to an abstract transition system403

whose input environment contains an integer ints, and whose result type is also an integer.404

The followed-by delay results in a local state variable called sum_fby, and we encode the405

existentially-quantified recursive stream as a free context variable called sum:406

let sum_def: system (ints: Z) Z = {
state = (sum_fby: Z);
free = (sum: Z);
init = { sum_fby = 0 };
step = λi f s. {

update = { sum_fby = f.sum };
value = f.sum;
rely = (f.sum = s.sum_fby + i.ints) ∧ i.ints > 0;
guar = f.sum > 0; } }

The initial state of 0 corresponds to the initial value of the followed-by. In the step407

function, argument i refers to the input heap containing i.ints, f refers to the free heap408

containing the recursive stream f.sum, and s refers to the state heap containing s.sum_fby.409

In the rely of the step result, f.sum is constrained to be the translated body of the recursive410

stream. The translated rely also includes the contract’s rely that the input integer is positive.411

Finally, the translated guarantee includes the contract’s guarantee that the output is positive.412

To verify the transition system, we prove inductively that if the rely always holds, then413

the guarantee holds; we discuss proofs of system validity further in Subsection 4.2.414

The translation for contract instantiations is similar, except that the contract body is415

replaced by an arbitrary value from the free context. For example, we can use the sum416

contract to implement the Fibonacci sequence with rec fib. sum (1 fby fib). This program417

does not require any input values, so we leave the input context empty. The state context418

includes an entry for the 1 fby fib followed-by expression, but does not include the followed-by419

expressions inside the contract definition. Similarly, the free context includes an entry for420

the recursive stream, and an entry for the abstract, underspecified value of the contract:421

let fib_def: system () Z = {
state = (fib_fby: Z);
free = (fib: Z; sum_contract: Z);
init = { fib_fby = 1 };
step = λi f s. {

update = { fib_fby = f.fib };
value = f.fib;
rely = (f.fib = f.sum_contract)

∧ (s.fib_fby > 0 =⇒ f.sum_contract > 0);
guar = s.fib_fby > 0; } }

A. Robinson and A. Potanin 15

JvKstate = ·
JxKstate = ·

Jp(e)Kstate =
⋃

i
JeiKstate

Jv fby eKstate = xfby(e) : τ, JeKstate (fresh xfby(e))
Jrec x. eKstate = JeKstate

Jlet x = e in e′Kstate = JeKstate ∪ Je′Kstate

Jcheckπ eKstate = JeKstate

Jcontractπ {er} eb {x. eg}Kstate = JerKstate ∪ JebKstate

JvKfree = ·
JxKfree = ·

Jp(e)Kfree =
⋃

i
JeiKfree

Jv fby eKfree = JeKfree

Jrec x. eKfree = x : τ, JeKfree

Jlet x = e in e′Kfree = JeKfree ∪ Je′Kstate

Jcheckπ eKfree = JeKfree

Jcontractπ {er} eb {x. eg}Kfree = x : τ, JerKfree ∪ JebKstate

Figure 8 Transition system typing contexts of expressions; for an expression e, JeKstate : Γ and
JeKfree : Γ describe the heaps used to store the expression’s internal state and extra inputs.

As before, the translated rely includes the assumption that the recursive stream’s value422

(f.fib) agrees with its body (f.sum_contract). Additionally, the rely includes the assumption423

that the contract’s rely implies the guarantee: if sum’s input (s.fib_fby) is positive, then424

its output (f.sum_contract) is positive too. Finally, the translated guarantee encodes the425

obligation that the environment satisfies the contract’s rely – the input to sum is positive.426

Note that the transition system requires the rely to hold at the current step, while the427

“true” semantics of contracts requires the rely to hold at every step so far. This minor428

optimisation is sound, as we define system validity to require all steps to satisfy the rely.429

4.1 Translation430

We now present the details of the translation. For causal expressions, the translated transition431

system is verified to be an abstraction of the original expression’s dynamic semantics, and the432

generated proof obligations imply that the original expression satisfies the checked semantics.433

Figure 8 defines the internal state and free contexts required for an expression. For434

most expression forms, the state and free contexts are defined by taking the union of the435

contexts of subexpressions. Followed-by delays introduce a local state variable xfby(e) in436

which to store the most recent stream value. We generate a fresh variable here, although the437

implementation uses de Bruijn indices. Recursive streams and contracts both introduce new438

bindings into the free context; we assume that their binders x are unique.439

Figure 9 defines the translation for expressions. Values and variables have no internal440

state. For variables, we look for the variable binding in either of the input or free heaps;441

bindings are unique and cannot occur in both. We omit the rely and guarantee definitions442

here; both are trivially true.443

To translate primitives, we union together the initial states of the subexpressions; updating444

the state is similar. For the rely and guarantee definitions, we take the conjunction: we can445

assume that all subexpressions rely clauses hold, and must show that all guarantees hold.446

To translate a followed-by v fby e, we initialise the followed-by’s unique binder xfby(e)447

16 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

JvKinit = ()
JvKvalue(i, f, s) = v

JxKinit = ()
JxKvalue(i, f, s) = (i ∪ f).x

Jp(e)Kinit =
⋃

i
JeiKinit

Jp(e)Kvalue(i, f, s) = prim-sem(p, JeKvalue(i, f, s))
Jp(e)Kupdate(i, f, s) =

⋃
i
JeiKupdate(i, f, s)

Jp(e)Krely(i, f, s) =
∧

i
JeiKrely(i, f, s)

Jp(e)Kguar(i, f, s) =
∧

i
JeiKguar(i, f, s)

Jv fby eKinit = JeKinit ∪ {xfby(e) 7→ v}
Jv fby eKvalue(i, f, s) = s.xfby(e)
Jv fby eKupdate(i, f, s) = JeKupdate(i, f, s) ∪ {xfby(e) 7→ JeKvalue(i, f, s)}
Jv fby eKrely(i, f, s) = JeKrely(i, f, s)
Jv fby eKguar(i, f, s) = JeKguar(i, f, s)

Jrec x. eKinit = JeKinit

Jrec x. eKvalue(i, f, s) = f.x

Jrec x. eKupdate(i, f, s) = JeKupdate(i, f, s)
Jrec x. eKrely(i, f, s) = JeKrely(i, f, s)

∧ f.x = JeKvalue(i, f, s)
Jrec x. eKguar(i, f, s) = JeKguar(i, f, s)

Jlet x = e in e′Kinit = JeKinit ∪ Je′Kinit

Jlet x = e in e′Kvalue(i, f, s) = Je′Kvalue(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)
Jlet x = e in e′Kupdate(i, f, s) = Je′Kupdate(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)

∪ JeKupdate(i, f, s)
Jlet x = e in e′Krely(i, f, s) = Je′Krely(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)

∧ JeKrely(i, f, s)
Jlet x = e in e′Kguar(i, f, s) = Je′Kguar(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)

∧ JeKguar(i, f, s)

Jcheckπ eKinit = JeKinit

Jcheckπ eKvalue(i, f, s) = ()
Jcheckπ eKupdate(i, f, s) = JeKupdate(i, f, s)
Jcheckπ eKrely(i, f, s) = (π = □✓ =⇒ JeKvalue(i, f, s)) ∧ JeKrely(i, f, s)
Jcheckπ eKguar(i, f, s) = (π = □? =⇒ JeKvalue(i, f, s)) ∧ JeKguar(i, f, s)

Jcontractπ {er} eb {x. eg}Kinit = JerKinit ∪ JegKinit

Jcontractπ {er} eb {x. eg}Kvalue(i, f, s) = f.x

Jcontractπ {er} eb {x. eg}Kupdate(i, f, s) = JerKupdate(i, f, s) ∪ JegKupdate(i, f, s)
Jcontractπ {er} eb {x. eg}Krely(i, f, s) = (JerKvalue(i, f, s) =⇒ JegKvalue(i, f, s))

∧ (π = □✓ =⇒ JerKvalue(i, f, s))
∧ JerKrely(i, f, s)
∧ (JerKvalue(i, f, s) =⇒ JegKrely(i, f, s)

Jcontractπ {er} eb {x. eg}Kguar(i, f, s) = (π = □? =⇒ JerKvalue(i, f, s))
∧ JerKguar(i, f, s) ∧ JegKguar(i, f, s)

Figure 9 Transition system semantics; for an expression Γ ⊢ e : τ , JeKinit : heap JeKstate is
the initial state. For each field of the step-result type, we define a translation function that
takes the input, free and state heaps: for example, we define the value-result of a step with type
JeKvalue : heap Γ → heap JeKfree → heap JeKstate → τ .

A. Robinson and A. Potanin 17

to the followed-by’s default value v. At each step, we return the value in the local state448

before updating the local state to the subexpression’s new value.449

To translate a recursive expression rec x. e of type τ , we require an arbitrary value450

x : τ in the free heap. The rely proposition constrains the free variable x to be the result of451

evaluating e with the binding for x passed along, thus closing the recursive loop.452

To translate let-expressions let x = e in e′, we extend the input heap with the value of453

e before evaluating e′. The presentation here duplicates the computation of the value of e,454

but the actual implementation introduces a single binding.455

To translate a check property, we inspect the property status. If the property is known to456

be valid, then we can assume the property is true in the rely clause. Otherwise, we include457

the property as an obligation in the guarantee clause. In either case, we also include the458

subexpression’s rely and guarantee clauses.459

Finally, to translate contract instantiations, we use the contract’s rely and guarantee and460

ignore the body. As with recursive expressions, we require an arbitrary value x : τ in the461

free heap. The translation’s rely allows us to assume that the contract definition holds: that462

is, the contract’s rely implies the contract’s guarantee. If the contract instantiation is known463

to be valid, we can also assume that the contract’s rely holds. Otherwise, we include the464

contract’s rely as an obligation by putting it in the translation’s guarantee.465

4.2 Proof obligations and induction466

To verify that the translated system satisfies its proof obligations – that is, the checked467

properties and contract relies hold — we can perform induction on the system’s sequence of468

steps. A system satisfies its proof obligations if, for any sequence of steps that all satisfy its469

rely or assumptions, the system’s guarantee also holds for all of the steps.470

Inductive proofs on Lustre programs generally use a non-standard definition of induction,471

as the property we wish to show is a function of the step result, rather than being a function472

of the state. This means that the base case must take a single step from the initial state to473

be able to state the property that, if the step result’s rely holds, then its guarantee holds:474

let inductive_check_base (sys : system input τ) : prop =
∀(i : heap input)(f : heap sys.free).
let stp = sys.step i f sys.init in
stp.rely =⇒ stp.guar

For the inductive step case, we allow the system to take two steps from an arbitrary state,475

assuming that both steps satisfy the rely and the first step satisfied the inductive property:476

let inductive_check_step (sys : system input τ) : prop =
∀(i0 i1 : heap input)(f0 f1 : heap sys.free)(s0 : heap sys.state).
let stp1 = sys.step i0 f0 s0 in
let stp2 = sys.step i1 f1 stp1.state in
stp1.rely =⇒ stp1.guar =⇒ stp2.rely =⇒ stp2.guar

This inductive scheme also generalises to k-induction, which allows the inductive case to477

assume the previous k steps satisfied the inductive property, rather than just assuming that478

the one previous step holds. K-induction is a fairly standard invariant strengthening technique;479

intuitively, it allows the proof to use more context of the history of execution [21, 11, 16].480

To reason about system validity in general, we define a predicate system_holds_all that481

formally defines a valid system as: for all sequences of inputs and their corresponding steps, if482

all of the steps’ relies hold, then the guarantees also hold. Validity is implied by (k-)induction.483

18 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

Σ ⊢ e ∼ s

Σ ⊢ v ∼ s
(IValue) Σ ⊢ x ∼ s

(IVar)

Σ ⊢ e1 ∼ s . . . Σ ⊢ en ∼ s

Σ ⊢ p(e) ∼ s
(IPrim)

s.xfby(e′) = v · ⊢ e′ ∼ s

· ⊢ v fby e′ ∼ s
(IFby0)

Σ; σ ⊢ e′ ⇓ s.xfby(e′) Σ; σ ⊢ e′ ∼ s

Σ; σ ⊢ v fby e′ ∼ s
(IFbyS)

Σ ⊢ rec x. e ⇓∗ V Σ[x 7→ V] ⊢ e ∼ s

Σ ⊢ rec x. e[x] ∼ s
(IRec)

Σ ⊢ e ⇓∗ V Σ ⊢ e ∼ s Σ[x 7→ V] ⊢ e′ ∼ s

Σ ⊢ let x = e in e′[x] ∼ s
(ILet)

Σ ⊢ e ∼ s

Σ ⊢ checkπ e ∼ s
(ICheck)

Σ ⊢ ebody ⇓∗ V Σ ⊢ erely ∼ s Σ[x 7→ V] ⊢ eguar ∼ s

Σ ⊢ contractπ {erely} ebody {x. eguar[x]} ∼ s
(IContract)

Figure 10 Transition system state invariant

4.3 Translation correctness proofs484

We prove that the transition system is an abstraction of the dynamic semantics: that is, if485

the expression evaluates to v under some context, then there exists some execution of the486

transition system that also results in v. The transition system itself is deterministic, but the487

free context provides the non-determinism which may occur from underspecified contracts;488

our theorem statement existentially quantifies the free heap.489

The results presented here rely heavily on the totality and substitution metaproperties490

described in Subsection 3.3. Figure 10 defines the invariant for the abstraction proof; the491

judgment form Σ ⊢ e ∼ s checks that s is a valid state heap. We use the invariant to state492

that, if executing the transition system for e on the entire streaming history Σ results in493

state heap s, then s is a valid state.494

As most expressions do not modify the state heap, the invariant for most expressions495

simply descends into the subexpressions. Where new bindings are added, we use the dynamic496

semantics to extend the context with the new values. The invariant for followed-by expressions497

asserts that the initial state of the followed-by is the default value; on subsequent steps, the498

state corresponds to the dynamic semantics. With this invariant, we can prove abstraction:499

▶ Theorem 4 (translation-abstraction). For a well-typed causal expression e and streaming500

history Σ, if e evaluates to stream V (Σ ⊢ e ⇓∗ V), then there exists a sequence of free heaps501

ΣF such that repeated application of the transition system’s step results in V .502

Finally, we can show the main entailment result that if the proof obligations hold on the503

system, then the original program is valid according to the checked semantics:504

A. Robinson and A. Potanin 19

▶ Theorem 5 (translation-entailment). For a well-typed causal expression e and its translated505

system s, if the system holds (system_holds_all s), and the checked properties in e hold506

(∀Σ. Σ ⊢□✓ e valid), then the unknown properties in e also hold (∀Σ. Σ ⊢□? e valid)507

The above theorem allows us to bless the expression and mark all properties as valid508

(Subsubsection 3.2.1). Importantly, the assumption that the checked properties hold lets us509

re-use previously-verified properties without re-proving them, allowing for modular proofs.510

5 Extraction511

Pipit can generate executable code which is suitable for real-time execution on embedded512

devices. The code extraction uses a variation of the abstract transition system described in513

Section 4, with two main differences to ensure that the result is executable without relying514

on the environment to provide values for the free context. Contracts are straightforward to515

execute by using the body of the contract rather than abstracting over the implementation.516

To execute recursive expressions rec x. e : τ , we require an arbitrary value of type τ to517

seed the fixpoint, as described in Subsection 3.3. We first call the step function to evaluate e518

with x bound to ⊥τ . This step call returns the correct value, but the updated state is invalid,519

as it may refer to the bottom value. To get the correct state, we call the step function again,520

this time with x bound to the correct value, v.521

For example, for the sum contract with body (rec sum. (0 fby sum) + ints), we generate522

an executable system that takes an input context containing integer variable ints, with a523

single state variable for the followed-by, and returning an integer:524

let sum_def: system (ints: Z) Z = {
state = (sum_fby: Z);
init = { sum_fby = 0; };
step = λi s.

let (fby0, s0) = (s.sum_fby, s {sum_fby = ⊥Z}) in
let (sum0, s0) = (fby0 + i.ints, s0) in
let (fby1, s1) = (s.sum_fby, s {sum_fby = sum0}) in
let (sum1, s1) = (fby1 + i.ints, s1) in
(sum0, s1) }

Here, the step function takes heaps of the input and state contexts, and returns a pair525

of the result value and the updated state. The first two bindings correspond to the seeded526

evaluation with the recursive value for the sum set to ⊥Z; as such, the resulting state s0527

is invalid. The last two bindings recompute the state, this time with the correct recursive528

value sum0 used in the state. This duplication of work can often be removed by the partial529

evaluation and dead-code-elimination which we perform during code extraction.530

This translation to transition systems is verified to preserve the original semantics. The531

invariant is very similar to that of Subsection 4.3, except that the invariant descends into the532

implementations of contracts. For the abstract systems we only showed abstraction; to prove533

that executable systems are equivalent to the original semantics, we use the fact that the534

original semantics and transition systems are both deterministic and total (Subsection 3.3).535

▶ Theorem 6 (execution-equivalence). For a well-typed causal expression e and streaming536

history Σ, e evaluates to stream V (Σ ⊢ e ⇓∗ V) if-and-only-if repeated application of the537

transition system’s step on Σ also results in V .538

20 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

To extract the program, we use a hybrid embedding as described in [23], which is similar539

to staged-compilation. The hybrid embedding involves a deep embedding of the Pipit540

core language, while the translation to executable transition systems produces a shallow541

embedding. We use the F⋆ host language’s normalisation-by-evaluation and tactic support [31]542

to partially-evaluate the application of the translation to a particular input program. This543

partial-evaluation results in a concrete transition system that fits in the Low⋆ subset of F⋆,544

which can then be extracted to statically-allocated C code [34].545

The generated C code for sum2 includes a struct type to hold the state information, as546

well as reset and step functions:547

struct sum_state { uint32_t sum_fby; }
void sum_reset(struct sum_state* state);
int sum_step(struct sum_state* state, uint32_t ints);

The reset function takes the pointer to the state struct and sets it to its initial values.548

The step function takes the pointer to the state struct and the inputs, and returns the result549

integer. The state struct is updated in-place. The implementations of these functions avoid550

dynamic (heap) allocation and are suitable for embedded systems. This interface is standard551

for Lustre compilers [5, 19] and other synchronous languages.552

Unfortunately, our current approach is unsuitable for generating imperative array code,553

as our pure transition system only supports pure arrays. In the future, we intend to support554

efficient array computations and fix the above work duplication by introducing an intermediate555

imperative language such as Obc [3], a static object-based language suitable for synchronous556

systems. Even with an added intermediate language, we believe that a variant of our current557

translation and proof-of-correctness will remain useful as an intermediate semantics.558

6 Evaluation559

To evaluate Pipit, we have implemented the high-level logic of a Time-Triggered Controller560

Area Network (TTCAN) bus driver [1], described earlier in Section 2. The CAN bus is561

common in safety-critical automotive and industrial settings. The time-triggered network562

architecture defines a static schedule of network traffic; by having all nodes on the network563

adhere to the schedule, the reliability of periodic messages is significantly increased [15].564

The TTCAN protocol can be implemented in two levels of increasing complexity. In the565

first level, reference messages, which perform synchronisation between nodes, contain the566

index of the newly-started cycle. In the second level, the reference messages also contain the567

value of a global fractional clock and whether any gaps have occurred in the global clock,568

which allows other nodes to calibrate their own clocks. We implement the first level as it is569

more amenable to software implementation [22].570

The implementation defines a streaming function that takes a stream describing the current571

time, the state of the hardware, and any received messages. It returns a stream of commands572

to be performed, such as sending a particular reference message. The implementation defines573

a pure streaming function. To actually interact with the hardware we assume a small574

hardware-interop layer that reads from the hardware registers and translates the commands575

to hardware-register writes, but we have not yet implemented this. We package the driver’s576

inputs into a record for convenience:577

2 This interface is for a variant of the sum contract with 32-bit integers instead of unbounded integers.

A. Robinson and A. Potanin 21

type driver_input = {
local_time: network_time_unit;
mode_cmd: option mode;
tx_status: tx_status;
bus_status: bus_status;
rx_ref: option ref_message;
rx_app: option app_message_index;

}

Here, the local-time field denotes the time-since-boot in network time units, which are578

based on the bitrate of the underlying network bus. The mode-command is an optional field579

which indicates requests from the application to enter configuration or execution mode. The580

transmission-status describes the status of the last transmission request and may be none,581

success, or various error conditions. The bus-status describes whether the bus is currently582

idle, busy, or in an error state. The two receive fields denote messages received from the bus;583

for application-specific messages the time-triggered logic only needs the message identifier.584

The driver-logic returns a stream of commands for the hardware-interop layer to perform:585

type commands = {
enable_acks: bool;
tx_ref: option ref_message;
tx_app: option app_message_index;
tx_delay: network_time_unit;

}

The enable-acknowledgements field denotes whether the hardware should respond to586

messages from other nodes with an acknowledgement bit; in the case of a severe error587

acknowledgements are disabled, as the node must not write to the bus at all. The transmit588

fields denote whether to send a reference message or an application-specific message. For589

application-specific messages, the hardware-interop layer maintains the transmission buffers590

containing the actual message payload. To meet the schedule as closely as possible, the driver591

anticipates the next transmission and includes a transmission delay to tell the hardware592

exactly when to send the next message.593

6.1 Runtime594

The implementation includes an extension of the trigger-fetch logic described in Section 2, as595

well as state machines for tracking node synchronisation, master status and fault handling.596

We generate real-time C code as described in Section 5. We evaluated the generated C code597

by executing with randomised inputs and measuring the worst-case-execution-time on a598

Raspberry Pi Pico (RP2040) microcontroller. The runtime of the driver logic is fairly stable:599

over 5,000 executions, the measured worst-case execution time was 140µs, while the average600

was 90µs with a standard deviation of 1.5µs. Earlier work on fault-tolerant TTCAN [41]601

describes the required slot sizes — the minimum time between triggers — to achieve bus602

utilisation at different bus rates. For a 125Kbit/s bus, a slot size of approximately 1,500µs603

is required to achieve utilisation above 85 per cent. For the maximum CAN bus rate of604

1Mbit/s, the required slot size is 184µs. Further evaluation is required to ensure that the605

complete runtime including the hardware-interop layer is sufficient for full-speed CAN.606

Our code generation can be improved in a few ways. A common optimisation in Lustre is607

to fuse consecutive if-statements with the same condition [5]; such an optimisation seems608

22 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

let rec next (i: int) (c: cycle):
Tot (option int)

(decreases (count - i)) =
if trigger_enabled i c

then Some i

else if i ≥ count − 1
then None
else next (i + 1) c

function next(index: int; c: cycle)
returns (result: int)

var next_array: int ^ COUNT;
let

next_array[i] =
if trigger_enabled(COUNT - 1 - i, c)
then COUNT - 1 - i
else if i <= 0
then NO_NEXT_TRIGGER
else next_array[i - 1];

result =
next_array[COUNT - 1 - index];

tel

Figure 11 Left: next-trigger logic in F⋆; right: Kind2 encoding as array scan. In F⋆, the Tot τ

(decreases . . .) syntax declares a total function with the given termination measure. In Kind2, the
intˆCOUNT syntax denotes the type of an array of integers of length COUNT, while the next_array[i]
declaration defines the elements of the array as a function of the index i.

useful here, as our treatment of optional values introduces repeated unpacking and repacking.609

Some form of array fusion [37] may also be useful for removing redundant array operations.610

Our current extraction generates a transition-system with a step function which returns611

a tuple of the updated state and result. Composing these step functions together results612

in repeated boxing and unboxing of this tuple; we currently rely on the F⋆ normaliser to613

remove this boxing. In the future, we plan to build on the current proofs to implement a614

more-sophisticated encoding that introduces less overhead.615

6.2 Verification616

We have verified a simplified trigger-fetch mechanism, as presented earlier (Section 2). For617

comparison, we implemented the same logic in the Kind2 model-checker [11]. The restrictions618

placed on the triggers array — that triggers are sorted by time-mark, that there must be an619

adequate time-gap between a trigger and its next-enabled, and that a trigger’s time-mark620

must be greater-than-or-equal-to its index — are naturally expressed with quantifiers. The621

Kind2 model-checker includes experimental array and quantifier support [26]. Due to the622

experimental nature of these features, we had to work around some limitations: for example,623

the use of arrays and quantifiers disables IC3-based invariant generation; quantified variables624

cannot be used in function calls; and the use of top-level constant arrays caused runtime625

errors that rendered most properties invalid [27].626

We were able to express equivalent properties in Kind2 and in Pipit, aside from some627

encoding issues. For example, the specification-only function that finds the next trigger628

is naturally recursive. Kind2 does not support recursive functions, but we were able to629

encode it by introducing a temporary array and using Kind2’s array comprehension syntax630

for scanning over arrays. Additionally, while the recursive call increases the index, the array631

scan can only depend on values with lower indices. Figure 11 illustrates this encoding with a632

simplified version of the next-trigger logic.633

We compare against two Kind2 implementations: one corresponds closely to the Pipit634

development, while the other includes a critical simplification to modify the trigger-enabled635

set to be a single cycle index. In TTCAN proper, the enabled set is implemented as a636

A. Robinson and A. Potanin 23

Kind2 Pipit
simple enable-set full enable-set

size wall-clock CPU time wall-clock CPU time wall-clock CPU time
1 1.48s 1.06s 1.57s 2.26s 5.25s 5.03s
2 1.51s 1.26s 1.71s 2.93s 5.25s 5.03s
4 1.57s 1.62s 2.08s 4.78s 5.25s 5.03s
8 1.76s 3.07s 4.21s 16.98s 5.25s 5.03s

16 3.36s 11.91s 13.82s 65.57s 5.25s 5.03s
32 12.15s 62.38s 269.14s 1230.05s 5.25s 5.03s
64 1701.01s 9096.99s (timeout) 5.25s 5.03s

128 (timeout) (timeout) 5.25s 5.03s

Figure 12 Verification time for trigger-fetch; simple enable-set uses a simplified version of the
enable-set, while full enable-set uses bitwise arithmetic as in the TTCAN specification. The wall-clock
time denotes the elapsed time that an engineer must spend waiting for the result; the CPU time
denotes the total time spent computing by all of the CPU cores. The verification time for Pipit is a
once-and-for-all proof that is parametric in the size of the array. The time limit was one hour.

cycle-offset and repeat-factor. Checking if a trigger is enabled in the current cycle requires637

nonlinear arithmetic, which is difficult for SMT solvers. In our Pipit development, we can638

treat the definition of the cycle set abstractly. However, in the Kind2 development, quantified639

formulas cannot contain function calls, which means that we cannot hide the implementation640

of the enabled-set check by providing an abstract contract. This limitation also makes the641

specification quite unwieldy, as we must manually inline any functions in quantified formulas.642

Figure 12 shows the verification runtime for different sizes of arrays; the Pipit version643

is parametric in the array size, and is thus verified for all sizes of arrays. We ran these644

experiments in Docker on an Intel i5-12500 with 32GB of RAM. Both Kind2 and Pipit645

developments of the trigger-fetch logic are roughly the same size, on the order of two-646

hundred lines of code including comments. Ignoring whitespace and comments, the Pipit647

implementation of trigger-fetch has 26 lines of actual executable code, while the Kind2 code648

has 32. The majority of the remaining code comprises the definition of valid schedules (34 for649

Pipit, 28 for Kind2), and the lemma statements and invariants (12 for Pipit, 31 for Kind2),650

as well as contract statements and boilerplate.651

We were able to verify the Kind2 implementation of the complete trigger-fetch mechanism652

for up to 32 triggers; above that, our verification timed out after one hour. For the simplified653

trigger-fetch mechanism, we were able to verify up to 64 triggers. For reference, hardware654

implementations of TTCAN such as M_TTCAN support up to 64 triggers [36].655

We plan to verify the remainder of the TTCAN implementation and publish it separately.656

Prior work formalising TTCAN has variously modeled the protocol itself [39, 33, 30], instances657

of the protocol [20], and abstract models of TTCAN implementations [29], but we are unaware658

of any prior work that has verified an executable implementation of TTCAN.659

Separately, Pipit has also been used to implement and verify a real-time controller for a660

coffee machine reservoir control system [38]. The reservoir has a float switch to sense the661

water level and a solenoid to allow the intake of water. The specification includes a simple662

model of the water reservoir and shows that the reservoir does not exceed the maximum663

level under different failure-mode assumptions.664

24 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

7 Related work665

Using existing Lustre tools to verify and execute the time-triggered CAN driver from Section 2666

is nontrivial. Compiling the triggers array with an unverified compiler such as Lustre V6 [24]667

or Heptagon [19] is straightforward; however, the verified Lustre compiler Vélus [7] does not668

support arrays, records, or a foreign-function interface. Recent work on translation validation669

for LustreC [9] also does not yet support arrays.670

Verifying the time-triggered CAN driver is trickier, as the restrictions placed on the671

triggers array — that triggers are sorted by time-mark, there must be an adequate time-gap672

between a trigger and its next-enabled, and a trigger’s time-mark must be greater-than-or-673

equal-to its index — naturally require quantifiers. As described in Section 6, Kind2 does674

include experimental array and quantifier support, but in our experiments was unable to675

verify the full logic for arrays up to the 64 triggers, which is the size supported by hardware676

implementations of TTCAN. Additionally, due to the limitations that require the constant677

triggers array to be passed as an argument, compiling the program with Lustre V6 would678

result in the entire triggers array being copied to the stack each iteration, which is unlikely679

to result in acceptable performance.680

Other model-checkers for Lustre such as Lesar [35], JKind [16] and the original Kind [21]681

do not support quantifiers. It may be possible to encode the quantifiers as fixed-size loops682

in those that support arrays, but ensuring that these loops do not affect the execution or683

runtime complexity of the generated code does not appear to be straightforward.684

These model-checkers have definite usability advantages over the general-purpose-prover685

approach offered here: they can often generate concrete counterexamples and implement686

counterexample-based invariant-generation techniques such as ICE [18] and PDR [8, 14].687

However, even when the problem can be expressed, these model-checkers do not provide much688

assurance that the semantics they use for proofs matches the compiled code. In the future, we689

would like to investigate integrating Pipit with a model-checker via an unverified extraction:690

such an extraction may allow some of the usability benefits such as counterexamples and691

invariant generation. If this integration were used solely for debugging and suggesting692

candidate invariants, then such a change would not necessarily expand the trusted computing693

base — that is, we could augment our end-to-end verified workflow with unverified but694

validated invariant generation.695

Recent work has also introduced a form of refinement types for Lustre [12]. Rather696

than using transition systems, this work generates self-contained verification conditions697

based on the types of streams. Such a type-based approach promises to allow abstraction698

of the implementation details. However, for general-purpose functions such as count_when699

from Section 2, it is not clear how to give it a specification that actually abstracts the700

implementation: a simple specification that the result is within some range would hide too701

much and be insufficient for verifying the rest of the system. For such functions, the best702

specification is likely to include a re-statement of the implementation itself.703

The embedded language Copilot generates real-time C code for runtime monitoring [28].704

Recent work has used translation validation to show that the generated C code matches705

the high-level semantics [40]. Copilot supports model-checking via Kind2; however, the706

model-checking has a limited specification language and does not support contracts.707

Early work embedding a denotational semantics of Lucid Synchrone in an interactive708

theorem prover focussed on the semantics itself, rather than proving programs [4]. There is709

ongoing work to construct a denotational semantics of Vélus for program verification [6]. We710

believe that the hybrid SMT approach of F⋆ will allow for a better mixture of automated711

A. Robinson and A. Potanin 25

proofs with manual proofs. Compared to Vélus alone, the trusted computing base of Pipit is712

larger: we depend on all of F⋆, Low⋆’s unverified C code extraction and the Z3 SMT solver;713

in comparison, Vélus’ C code generation is verified and does not depend on any SMT solver.714

The deferred aspect of our proofs is similar to the deferred proofs of verification conditions715

for imperative programs, such as [32]. However, such verification conditions are syntactically716

deferred so that the verification condition can be proved later; in our case, the verification717

conditions are semantically deferred, so that more knowledge of the enclosing program718

can be exploited in the proof. In imperative programs, this sort of extra knowledge is719

generally provided explicitly as loop invariants, and non-looping statements have their720

weakest precondition computed automatically. In Lustre-style reactive languages such as721

ours, programs tend to be composed of many nested recursive streams, which perform a722

similar function to loops. Explicitly specifying an invariant for each recursive stream would723

be cumbersome; deferring the proof allows such invariants to be implicit.724

8 Conclusion725

We have presented Pipit, a verified compiler and proof system for reactive systems. Our726

implementation of the TTCAN driver logic shows that, by embedding pure F⋆ functions727

for array operations, Pipit can express programs which are currently unsupported by other728

verified Lustre compilers. Pipit can also verify high-level program properties which are729

difficult to express and prove in existing Lustre model-checkers. Our development includes730

verified translations to both abstract and executable transition systems; both are shown to731

preserve the dynamic semantics. We also introduced a checked semantics, which describes732

the semantics of checked properties and contracts; proof obligations generated by translation733

to abstract transition system are verified to correspond to these semantics.734

In the future, we intend to verify the remainder of the TTCAN driver logic. We also735

intend to increase the expressivity of Pipit by adding clocks, which are used to describe736

partially-defined streams [10]. Clocks are important for composing complex systems together737

and avoiding unnecessary computation; they may be useful if it becomes necessary to optimise738

the runtime of the TTCAN driver.739

We are interested in further pursuing the intersection of model-checking with interactive740

theorem proving. A smart-contract called Djed [42] currently uses a mixture of Kind2 [11]741

and manual Isabelle/HOL proofs to show that the contract is well-behaved. In future work,742

we would like to further investigate whether Pipit’s integration of streaming proofs with F⋆’s743

automated proof system would be able to provide similar proofs, without introducing any744

semantic gap between the two systems.745

References746

1 ISO/CD 11898-4. Road vehicles - Controller area network (CAN) - Part 4: Time triggered747

communication. Standard, International Organization for Standardization, 2000.748

2 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library749

(SMT-LIB). www.SMT-LIB.org, 2016.750

3 Dariusz Biernacki, Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. Clock-directed751

modular code generation for synchronous data-flow languages. In Proceedings of the 2008752

ACM SIGPLAN-SIGBED conference on Languages, compilers, and tools for embedded systems,753

pages 121–130, 2008.754

4 Sylvain Boulmé and Grégoire Hamon. A clocked denotational semantics for Lucid-Synchrone755

in Coq. Rap. tech., LIP6, 2001.756

26 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

5 Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel757

Rieg. A formally verified compiler for Lustre. In Proceedings of the 38th ACM SIGPLAN758

Conference on Programming Language Design and Implementation, 2017.759

6 Timothy Bourke, Paul Jeanmaire, and Marc Pouzet. Towards a denotational semantics of760

streams for a verified Lustre compiler. 2022. URL: https://types22.inria.fr/files/2022/761

06/TYPES_2022_slides_28.pdf.762

7 Timothy Bourke, Basile Pesin, and Marc Pouzet. Verified compilation of synchronous dataflow763

with state machines. ACM Transactions on Embedded Computing Systems, 22(5s):1–26, 2023.764

8 Aaron R Bradley. SAT-based model checking without unrolling. In Verification, Model765

Checking, and Abstract Interpretation: 12th International Conference, VMCAI 2011, Austin,766

TX, USA, January 23-25, 2011. Proceedings 12. Springer, 2011.767

9 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux. Equation-directed768

axiomatization of Lustre semantics to enable optimized code validation. ACM Transactions769

on Embedded Computing Systems, 22(5s):1–24, 2023.770

10 Paul Caspi and Marc Pouzet. A functional extension to Lustre. Intensional Programming I,771

1995.772

11 Adrian Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli. The Kind 2 model773

checker. In Computer Aided Verification, 2016.774

12 Jiawei Chen, José Luiz Vargas de Mendonça, Shayan Jalili, Bereket Ayele, Bereket Ngussie775

Bekele, Zhemin Qu, Pranjal Sharma, Tigist Shiferaw, Yicheng Zhang, and Jean-Baptiste776

Jeannin. Synchronous programming and refinement types in robotics: From verification to777

implementation. In Proceedings of the 8th ACM SIGPLAN International Workshop on Formal778

Techniques for Safety-Critical Systems, 2022.779

13 Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. Scade 6: A formal language for embedded780

critical software development. In 2017 International Symposium on Theoretical Aspects of781

Software Engineering (TASE), pages 1–11. IEEE, 2017.782

14 Niklas Eén, Alan Mishchenko, and Robert Brayton. Efficient implementation of property783

directed reachability. In 2011 Formal Methods in Computer-Aided Design (FMCAD). IEEE,784

2011.785

15 Thomas Fuehrer, Bernd Mueller, Florian Hartwich, and Robert Hugel. Time triggered CAN786

(TTCAN). SAE transactions, pages 143–149, 2001.787

16 Andrew Gacek, John Backes, Mike Whalen, Lucas Wagner, and Elaheh Ghassabani. The788

JKind model checker. In Computer Aided Verification: 30th International Conference, CAV789

2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,790

2018, Proceedings, Part II 30, pages 20–27. Springer, 2018.791

17 Emilio Jesús Gallego Arias, Pierre Jouvelot, Sylvain Ribstein, and Dorian Desblancs. The792

W-calculus: a synchronous framework for the verified modelling of digital signal processing793

algorithms. In Proceedings of the 9th ACM SIGPLAN International Workshop on Functional794

Art, Music, Modelling, and Design, pages 35–46, 2021.795

18 Pranav Garg, Christof Löding, Parthasarathy Madhusudan, and Daniel Neider. ICE: A796

robust framework for learning invariants. In Computer Aided Verification: 26th International797

Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,798

Austria, July 18-22, 2014. Proceedings 26. Springer, 2014.799

19 Léonard Gérard, Adrien Guatto, Cédric Pasteur, and Marc Pouzet. A modular memory800

optimization for synchronous data-flow languages: application to arrays in a Lustre compiler.801

ACM SIGPLAN Notices, 47(5), 2012.802

20 Xiaoyun Guo, Toshiaki Aoki, and Hsin-Hung Lin. Model checking of in-vehicle networking803

systems with CAN and FlexRay. Journal of Systems and Software, 161:110461, 2020.804

21 George Hagen and Cesare Tinelli. Scaling up the formal verification of Lustre programs with805

SMT-based techniques. In 2008 Formal Methods in Computer-Aided Design. IEEE, 2008.806

22 Florian Hartwich, Thomas Führer, Bernd Müller, and Robert Hugel. Integration of time807

triggered CAN (TTCAN_TC). SAE Transactions, pages 112–119, 2002.808

https://types22.inria.fr/files/2022/06/TYPES_2022_slides_28.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_slides_28.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_slides_28.pdf

A. Robinson and A. Potanin 27

23 Son Ho, Jonathan Protzenko, Abhishek Bichhawat, and Karthikeyan Bhargavan. Noise*: A809

library of verified high-performance secure channel protocol implementations. In 2022 IEEE810

Symposium on Security and Privacy (SP), pages 107–124. IEEE, 2022.811

24 Erwan Jahier, Pascal Raymond, and Nicolas Halbwachs. The Lustre V6 reference manual.812

Verimag, Grenoble, Dec, 2016.813

25 Kind2. Integer division rounds to negative infinite. Github issues, 2023. URL: https:814

//github.com/kind2-mc/kind2/issues/978.815

26 Kind2. Kind2 user documentation, 2.1.1 edition, 2023. URL: https://kind.cs.uiowa.edu/816

kind2_user_doc/doc.pdf.817

27 Kind2. Top-level array definition causes runtime failures. Github issues, 2024. URL: https:818

//github.com/kind2-mc/kind2/issues/1043.819

28 Jonathan Laurent, Alwyn Goodloe, and Lee Pike. Assuring the guardians. In Runtime820

Verification: 6th International Conference, RV 2015, Vienna, Austria, September 22-25, 2015.821

Proceedings. Springer, 2015.822

29 Gabriel Leen and Donal Heffernan. Modeling and verification of a time-triggered networking823

protocol. In International Conference on Networking, International Conference on Systems824

and International Conference on Mobile Communications and Learning Technologies (IC-825

NICONSMCL’06), pages 178–178. IEEE, 2006.826

30 Xin Li, Jian Guo, Yongxin Zhao, and Xiaoran Zhu. Formal modeling and verifying the827

TTCAN protocol from a probabilistic perspective. Journal of Circuits, Systems and Computers,828

28(10):1950177, 2018.829

31 Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel,830

Cătălin Hriţcu, Monal Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan831

Protzenko, et al. Meta-F⋆: Proof automation with SMT, tactics, and metaprograms. In832

Programming Languages and Systems: 28th European Symposium on Programming, ESOP833

2019, Held as Part of the European Joint Conferences on Theory and Practice of Software,834

ETAPS 2019, Prague, Czech Republic, April 6–11, 2019, Proceedings. Springer International835

Publishing Cham, 2019.836

32 Liam O’Connor. Deferring the details and deriving programs. In Proceedings of the 4th ACM837

SIGPLAN International Workshop on Type-Driven Development, pages 27–39, 2019.838

33 Can Pan, Jian Guo, Longfei Zhu, Jianqi Shi, Huibiao Zhu, and Xinyun Zhou. Modeling and839

verification of CAN bus with application layer using UPPAAL. Electronic Notes in Theoretical840

Computer Science, 309:31–49, 2014.841

34 Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng842

Wang, Santiago Zanella Béguelin, Antoine Delignat-Lavaud, Catalin Hritcu, Karthikeyan843

Bhargavan, Cédric Fournet, et al. Verified low-level programming embedded in F⋆. Proc.844

ACM program. lang., 1(ICFP), 2017.845

35 Pascal Raymond. Synchronous program verification with Lustre/Lesar. Modeling and Verific-846

ation of Real-Time Systems, 2008.847

36 Robert Bosch GmbH. M_TTCAN Time-triggered Controller Area Network User’s Manual,848

3.3.0 edition, 2019. URL: https://www.bosch-semiconductors.com/media/ip_modules/pdf_849

2/m_can/mttcan_users_manual_v330.pdf.850

37 Amos Robinson and Ben Lippmeier. Machine fusion: merging merges, more or less. In851

Proceedings of the 19th International Symposium on Principles and Practice of Declarative852

Programming, pages 139–150, 2017.853

38 Amos Robinson and Alex Potanin. Pipit: Reactive systems in F⋆(extended abstract). In854

Proceedings of the 8th ACM SIGPLAN International Workshop on Type-Driven Development,855

2023.856

39 Indranil Saha and Suman Roy. A finite state analysis of time-triggered CAN (TTCAN)857

protocol using Spin. In 2007 International Conference on Computing: Theory and Applications858

(ICCTA’07), pages 77–81. IEEE, 2007.859

https://github.com/kind2-mc/kind2/issues/978
https://github.com/kind2-mc/kind2/issues/978
https://github.com/kind2-mc/kind2/issues/978
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf
https://github.com/kind2-mc/kind2/issues/1043
https://github.com/kind2-mc/kind2/issues/1043
https://github.com/kind2-mc/kind2/issues/1043
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/m_can/mttcan_users_manual_v330.pdf
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/m_can/mttcan_users_manual_v330.pdf
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/m_can/mttcan_users_manual_v330.pdf

28 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

40 Ryan G Scott, Mike Dodds, Ivan Perez, Alwyn E Goodloe, and Robert Dockins. Trust-860

worthy runtime verification via bisimulation (experience report). Proceedings of the ACM on861

Programming Languages, 7(ICFP):305–321, 2023.862

41 Michael Short and Michael J Pont. Fault-tolerant time-triggered communication using CAN.863

IEEE transactions on Industrial Informatics, 3(2):131–142, 2007.864

42 Joachim Zahnentferner, Dmytro Kaidalov, Jean-Frédéric Etienne, and Javier Díaz. Djed: a865

formally verified crypto-backed autonomous stablecoin protocol. In 2023 IEEE International866

Conference on Blockchain and Cryptocurrency (ICBC), pages 1–9. IEEE, 2023.867

	1 Introduction
	2 Pipit for time-triggered networks
	2.1 Deferring and proving properties
	2.2 Restrictions on the triggers array
	2.3 Instantiating lemmas and defining contracts

	3 Pipit core language
	3.1 Dynamic semantics
	3.2 Checked semantics
	3.2.1 Blessing expressions and contracts

	3.3 Causality and metatheory

	4 Abstract transition systems
	4.1 Translation
	4.2 Proof obligations and induction
	4.3 Translation correctness proofs

	5 Extraction
	6 Evaluation
	6.1 Runtime
	6.2 Verification

	7 Related work
	8 Conclusion

